Computation of the response functions of spiral waves in active media.

نویسندگان

  • I V Biktasheva
  • D Barkley
  • V N Biktashev
  • G V Bordyugov
  • A J Foulkes
چکیده

Rotating spiral waves are a form of self-organization observed in spatially extended systems of physical, chemical, and biological natures. A small perturbation causes gradual change in spatial location of spiral's rotation center and frequency, i.e., drift. The response functions (RFs) of a spiral wave are the eigenfunctions of the adjoint linearized operator corresponding to the critical eigenvalues lambda=0,+/-iomega. The RFs describe the spiral's sensitivity to small perturbations in the way that a spiral is insensitive to small perturbations where its RFs are close to zero. The velocity of a spiral's drift is proportional to the convolution of RFs with the perturbation. Here we develop a regular and generic method of computing the RFs of stationary rotating spirals in reaction-diffusion equations. We demonstrate the method on the FitzHugh-Nagumo system and also show convergence of the method with respect to the computational parameters, i.e., discretization steps and size of the medium. The obtained RFs are localized at the spiral's core.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wave propagation theory in offshore applications

A frequency-wavenumber-domain formulation is presented in this paper for calculation of the Green's functions and wave propagation modes in a stratified fluid body underlain by a layered viscoelastic soil medium. The Green's functions define the solid and fluid displacements and fluid pressures due to uniform disk loads acting in either the soil or fluid media. The solution is in the frequency ...

متن کامل

توابع احتمالی حاکم بر نیروها و لنگرهای ناشی از امواج تصادفی دریا بر پایه قائم

Using the statistical characteristics is one of the methods to justify the random nature of the ocean waves. Probability function are used to facilitate the studies of the random waves parameters, such as the surface and height and period of the waves. Since, the force of the ocean waves are the prevalent principal forces on the offshore structures, the assignment of the significant structural ...

متن کامل

Response Functions of Spiral Wave Solutions of the Complex Ginzburg–Landau Equation

Dynamics of spiral waves in perturbed two-dimensional autowave media can be described asymptotically in terms of Aristotelean dynamics. We apply this general theory to the spiral waves in the Complex Ginzburg–Landau equation (CGLE). The RFs are found numerically. In this work, we study the dependence of RFs on parameters of the CGLE.

متن کامل

Response of GN Type II and Type III Theories on Reflection and Transmission Coefficients at the Boundary Surface of Micropolar Thermoelastic Media with Two Temperatures

In the present article, the reflection and transmission of plane waves at the boundary of thermally conducting micropolar elastic media with two temperatures is studied. The theory of thermoelasticity with and without energy dissipation is used to investigate the problem. The expressions for amplitudes ratios of reflected and transmitted waves at different angles of incident wave are obtained. ...

متن کامل

Generation of Love Wave in a Media with Temperature Dependent Properties Over a Heterogeneous Substratum

The present paper deals with the generation of Love waves in a layer of finite thickness over an initially stressed heterogeneous semi-infinite media. The rigidity and density of the layer are functions of temperature, i.e. they are temperature dependent.  The lower substratum is an initially stressed medium and its rigidity and density vary linearly with the depth. The frequency relation of Lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 79 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2009